SBMSplitMerge - Inference for a Generalised SBM with a Split Merge Sampler
Inference in a Bayesian framework for a generalised
stochastic block model. The generalised stochastic block model
(SBM) can capture group structure in network data without
requiring conjugate priors on the edge-states. Two sampling
methods are provided to perform inference on edge parameters
and block structure: a split-merge Markov chain Monte Carlo
algorithm and a Dirichlet process sampler. Green, Richardson
(2001) <doi:10.1111/1467-9469.00242>; Neal (2000)
<doi:10.1080/10618600.2000.10474879>; Ludkin (2019)
<arXiv:1909.09421>.